반 데르 발스 힘(van der Waals force)
원리
모든 물체는 아무리 매끄러워 보이는 것이라 할지라도 현미경으로 들여다보면 사실 매우 울퉁불퉁한 표면을 가지고 있다는 것을 알 수 있다. 따라서 아무것도 바르지 않은 채 두 물체를 이어 붙이면 그 사이엔 수많은 틈이 존재하게 되는데, 이 틈을 채워주는 것이 접착제의 기본 원리이다. 틈을 메워 마치 하나의 물체가 된 듯이 만드는 것이다.
모든 분자 간 혹은 각 분자의 일부분 간에는 ‘반 데르 발스 힘(van der Waals force)’이라는 인력이 작용하게 된다. 틈을 가득 메운 분자와 물체 사이에 이러한 반데르발스 힘이 작용하여 서로를 붙잡아 둘 수 있는 것이다. 반데르발스 힘을 최대한 이끌어내기 위하여 틈을 메우는 물질로는 분자를 많이 함유하여 다른 분자와 강력하게 결합하는 고분자 화합물을 사용한다.
하지만 그 틈을 아무 물질로나 채운다고 되는 것은 아닌데, 반데르발스 힘은 어떤 물체든지 견고히 붙일 만큼 강하지는 않기 때문이다. 따라서 접착하려는 물체의 무게, 표면 재질 등에 따라서 요구되는 접착력이 달라지기 때문에 각각 적절한 방법을 이용해야 한다. 때문에 단순히 반데르발스 힘으로 붙이는 방식 외에도 아예 접착면을 살짝 녹인 다음 굳으면서 접착면끼리 분자결합을 하게 만드는 방식도 많다. 일종의 화학적 용접이라고 이해하면 된다.
종류
처음부터 고분자였던 것을 액체 혹은 응고된 상태로 사용하는 것. 사용하기 편리하지만 접착력이 떨어진다는 단점이 있다.
본드
물풀, 딱풀, 녹말풀 등 각종 풀
처음엔 저분자 상태를 유지하다가 중합반응을 통해 고분자로 변형되어 접착력을 가지는 접착제도 있다. 용기 내에선 액체 상태로 존재해 접착력이 의심되지만 우선 밖으로 노출되면 공기 중의 수분과 반응해 중합반응을 일으켜 고분자가 된다.
순간접착제 - 중합반응이 매우 빠르기 때문에 순간접착제라 부르고 있다. 하지만 만약 뚜껑을 잘 닫지 않는다면 공기의 수증기와 접촉해 굳어버릴 수 있다. 순간접착제가 나오는 입구 부분이 단단히 굳어 사용에 어려움을 겪은 사람들도 많을 것이다.
고분자 고체를 가열해 녹여서 접착제로 이용하는 것도 있다.
글루건
아교
산소와 접촉하지 않아야 경화가 시작되는 혐기성 접착제도 있다. 혐기성이므로 아무리 뚜껑을 열어놓고 있어도 경화되는 일은 없다. 다만 너무 오랜 시간 열어두면 용제가 공기 중으로 증발해 말라버리기는 하니 사용 후 닫아주는 것이 좋다. 주로 개스킷, 배관밀봉, 너트체결 등 공기가 통하지 않는 좁은 틈새를 메우는데 효과적이다. 특히 배관설비에 사용하는 배관밀봉제는 실리콘 패킹, O링, 테프론 테이프 등을 대체하여 쓸 수 있고 이들보다 훨씬 안정적이며 사용도 손쉽기 때문에 써본 사람들은 엄청 선호하는 편이다. 특수접착제이기 때문에 가격은 비싼편이다.
배관밀봉제
기타
실리콘건
퍼티
시멘트
UV 접착제:동봉된 자외선 조사기로 자외선을 쬐어줘야 굳는 접착제.
Van der Waals Force
비극성 분자간의 아주 가까운 거리에서 발생하는 인력으로 노벨 물리학상을 수상한 네덜란드의 물리학자 요하너스 디데릭 판데르발스의 이름에서 따왔다.
표기에 따라 반데르발스 힘, 반데어발스 힘이라고 하기도 한다. 네덜란드어 van은 '반'에 약한 ㅍ 발음이 섞인 듯이 발음되기 때문이다.
이상 기체 법칙에서 선형성을 어긋내는 힘으로 정의하는 사람마다 정의가 다양하다. 아래의 분산력과의 동의어로 정의하는 경우, 퍼텐셜이 거리의 6제곱에 반비례하는 분자간 인력 상호작용으로 정의하는 경우, 모든 분자간 상호작용을 통틀어 정의하는 경우 등이 있다. 일반적으로 인력과 척력(반발력)의 합으로 계산한다.
분자간 상호작용은 1-10kJ/mol 안팎의 에너지를 가지며 원자간 상호작용(100kJ/mol 단위)에 비하면 매우 작다. 공유 결합으로 연결된 물질과 분자간 상호작용으로 연결된 물질의 녹는점/끓는점을 비교해 보면 쉽게 알 수 있다.
London 힘
무작위적인 전자 분포로 인한 순간적인 쌍극자로 인해 발생하는 힘. 런던 힘(London Force) 또는 분산력(Dispersion Force)이라고도 부른다.
무극성 분자간에만 존재하는 힘이 아니다. 전반적으로 분자량이 크고, 분자간 거리가 가까울수록 커진다. 흔히들 분자간 상호작용 중 가장 약하다고 오해하는데, 절대적 크기에 있어 절대로 작지 않다. 분자량이 커질수록 이 기여가 굉장히 커진다.
Debye 힘
쌍극자-유발 쌍극자간 힘.
Keesom 힘
회전 가능한 쌍극자간 힘.
작은 생물체는 질량은 작고 표면적은 크다보니 판데르발스 힘으로 중력을 극복하는 사례들이 있다. 예를 들어 거미의 경우 발바닥의 털을 이용하여 벽과의 표면적을 증가시켜 벽에 달라붙을 수 있게 된다. 이를 이용하여 어느 연구팀이 쉽게 붙였다 떼었다 할 수 있는 포스트잇을 연구중이다. 또한 곤충들은 발바닥에 물과 기름의 혼합물을 분비해 같은 일을 할 수 있다.
도마뱀붙이도 발바닥의 털을 이용하여 같은 원리로 벽에 붙을 수 있다.
이를 이용한 현미경도 있다.