자연 과학 Natural Science/화학 Chemistry

방사능(放射能, Radioactivity), 라듐, 우라늄, 토륨, 폴로늄, 원자핵 붕괴, 방사선(放射線, radioactive ray)

Jobs 9 2023. 2. 23. 10:54
반응형

방사능(放射能, Radioactivity)

라듐, 우라늄, 토륨, 폴로늄 등 원소의 원자핵이 붕괴하면서 방사선을 방출하는 일, 또는 그런 성질을 말한다

방사선이란 말을 써야 할 곳에 이 용어를 쓰는 경우가 많다. 그러한 대중성만큼이나 일상생활이나 뉴스에서도 매우 많이 오용되는 단어다. 쉽게 생각해서 방사능(Radioactivity)은 성질, 특성 등을 뜻하는 것이고 방사선(Radiation)이 생물에게 위험한 것 그 자체를 뜻한다고 보면 된다.


발생 원리

원자의 내부 구조

 

안정한 상태의 원자 구조


안정한 원자는 원자핵과 그 전자가 균형을 이루고 있다. 일반적으로 방사성 물질은 외부에서 원자핵에 에너지를 가하거나, 혹은 생성될 때부터 불안정한 상태를 지님으로서 발생한다. 고등학교에서 전자(electron)가 여기(勵起)된 상태로 갈 수 있음을 배웠듯이, 원자핵도 여기된 상태가 될 수 있다. 이렇게 여기된 원자핵이 핵종이 바뀌지 않고 낮은 에너지 상태로 변환되면 방출되는 것이 감마선이다. 

그리고 알파 붕괴라고 하는 알파 입자(헬륨-4 원자핵)를 방출하며 다른 핵종으로 변할 수 있는데 이때 방출되는 것이 알파선이다.

그리고 원자핵에서 중성자가 양성자로 또는 양성자가 중성자로 변하면서 즉, 전자나 양전자를 방출하며 다른 핵종으로 바뀌는 베타 붕괴가 있는데 여기서 나오는 것이 베타선이다.

이렇게 방사성 물질이 붕괴하며 안정한 물질로 변화, 양이 반으로 줄어드는 기간을 반감기라고 한다.

 

방사능 위험성

방사선은 세포의 DNA를 파괴하여 암세포가 생기게 한다. 반대로 방사선은 암세포를 파괴하여 암을 치료할 수도 있다.

방사선중에서 전리 방사선은 물질을 이온화시켜 강제로 화학 반응을 일으킨다. 그건 우리 몸 속의 세포나 DNA를 구성하는 원자들도 예외는 아니다. 이온화를 통해 화학반응을 일으키는 것은 산(Acid)의 반응 메커니즘과 같다. 즉 이를 이해하기 쉽게 설명하자면, 생물의 몸을 방사선이라는 나노 염산이 구석구석 화학적으로 볶아버리는 것이다. 그야말로 세포 생성이 불가능하여 산 채로 신체가 썩어가는 것이다. 물론 인간을 비롯한 여러 동식물 또한 언제나 자연방사능에 피폭 당하고 있고, DNA도 변형이 이루어지는 경우 자가수복기능을 통해 어느 정도까지의 데미지는 무시할 수 있다. 그러나 이 수복능력을 넘어서는 급진적, 장기적 화학적 변화가 일어나면 우리가 알고 있는 방사선 피폭의 증상이 발생하는 것이다. 잘 알려진 피폭 증세 중 하나는 입에서 납, 철 등을 입에 머금은 것 같은 금속맛이 느껴진다는 것인데, 히로시마, 나가사키 원자폭탄 투하 건부터, 체르노빌 원자력 발전소 폭발 사고 등 여러 방사선 사고에 의한 피폭자들이 하나같이 공통적으로 증언한 것이다. 이는 방사선이 미뢰의 신경을 교란하기 때문인 것으로 밝혀졌다. 

우리는 항상 자연스럽게 방사성 물질을 섭취하고 있다. 바나나, 자연재해, TV 같은 일상적인 요소에도 미량의 방사성 물질이 있기는 하지만, 매우 적은 양이기 때문에 인체에 해는 없다. 오히려 미량의 방사선은 몸에 좋다는 이론도 있으나, 실은 극미량이라도 선형적으로 위험이 증가한다는 이론이 주류다. 

방사성 물질이나 방사선을 사용하는 곳에서는 방사성 폐기물이 나오게 되는데, 이것을 처리하기가 쉽지 않다. 병원에서 사용하는 의료기기 같은 경우는 사용 중 지속적으로 방사능 물질을 생산해내진 않지만, 사용이 끝난 의료기기를 제대로 처리하지 않으면 이런 병크를 터트리는 수가 있다. 방사선 피폭 문서 참조. 

 

방사능 단위
방사능의 세기는 초당 붕괴 횟수(decay per second)로 나타낸다. 횟수는 단위가 없으므로 방사능의 SI 단위는 sec-1. 물론 이렇게 두면 번잡하기 때문에 방사선을 최초로 발견하여 마리 퀴리 와 함께 노벨상을 수상한 과학자 베크렐의 이름을 따 SI 유도 단위인 베크렐을 쓰며, 기호로는 Bq로 쓴다. 그 밖의 단위로 1Ci(큐리 = 3.7×1010 Bq = 37 GBq)가 있으며, 이 단위는 라듐-226 1g의 방사능에서 유래하였으나 지금은 잘 쓰이지 않는다. 

시간당 붕괴 수라는 강도의 단위지만 실질적으론 방사능 물질의 양으로 주로 쓰인다. 예를 들어 사고로 방사능 물질이 유출된 양은 그램 등 질량단위 보다는 실질적 위험을 반영하는 베크렐으로 주로 나타낸다. 1 Bq 자체는 매우 작은 양이므로 (사람도 4-5000 Bq 의 자연적 방사능 물질을 체내에 가지고 있다) 보통은 소량의 유출사고에는 10억 Bq인 GBq(기가베크렐)이나 1조 Bq인 TBq(테라베크렐), 대형 사고에는 PBq = 1×1015(페타베크렐) 등이 실용적 단위로 쓰인다. 1 그램의 방사선 세슘은 대충 3215 GBq = 3.215 TBq. 그러니 GBq라고 해도 단위가 크다고 놀랄 필요는 없다.  

예를 들어 고이아니아 방사능 유출사고에서 방사능 치료기의 방사성 세슘의 양은 약 50 TBq, 쓰리마일 섬 원자력 사고는 약 93 PBq 방사능 가스 와 560 GBq의 방사능 요오드가 방출되었다. 체르노빌 원자력 사고에서는 방사선 가스 6.5 EBq(엑사베크렐), 방사선 요오드 1.76 EBq가 유출되었다.  

물이나 식품재료, 토지 등이 방사능으로 오염된 정도는 Bq/liter, Bq/kg 또는 Bq/m2 등으로 나타낸다. 음용수 기준은 11 Bq / liter 정도.  

절대 방사선 조사량의 단위는 Gray(Gy = Joule/kg)으로 이건 주로 X-ray 장치등 방사선 장치가 방출하는 방사능 출력 또는 토성이나 반 알렌대 등 우주공간에서의 방사선 강도, 인체가 아닌 마이크로칩 등 물체가 받는 방사능 강도 등을 나타내는데 쓰이는 단위이다. 과거에 사용하던 단위로 rad 라는 단위가 있는데 (1 rad = 100 erg/gram) 100 rad = 1 Gy이다.  

통상 X-ray 1회는 0.7 mGy, CT scan은 6-8 mGy, 전신 CT는 14 mGy 정도. 암치료용 방사선 치료에는 부분조사로 약 20-80 Gy 로 상당히 대량의 방사선을 종양 부위에 집중 조사한다. 

인체에 방사선 피폭 피해가 나타나는 최소 조사량은 250 mGy, 전신피폭시에 인체 반수 치사량 은 4 Gy 정도, 일반 반도체의 방사선 허용량은 10 Gy, 우주선이나 무기 등에 탑재하는 방사선 내성 강화(rad-hardened) 반도체는 10,000 Gy(1 M rad) 정도까지 견딜 수 있다.  

절대 방사선 조사량을 인체 부위의 흡수율 등을 고려해서 실질적으로 인체가 흡수하여 피해를 입는 단위 무게당 실효 피폭량을 나타내는 데는 주로 시버트(Sievert) 라는 단위를 나타낸다. 이건 인체 조직 1 kg 당 받는 방사선 에너지로 단위는 Joule/kg이다. 피폭 에너지 총량은 피폭자의 체중과 인체 부위마다 다른 효과 비율을 곱해야 총에너지가 나오지만 그런 식으론 잘 사용하지 않고 퉁쳐서 성인 1인의 인체가 받은 총 피폭량을 나타내는 데도 시버트 단위를 사용한다. 즉 Gray/ rem으로 표시하는 절대 방사선 조사량을 인간 성인을 대상으로 흡수율을 가중치를 주어 피폭량을 계산한 값. 

1 시버트는 상당히 큰 단위로 사람이 수 시버트 정도를 피폭 당하면 며칠 안에 사망에 이를 수 있는 치사량이다. 연간 피폭량 이나 1일 피폭 한계치, X레이 1회 촬영시 피폭량 등도 모두 밀리 시버트, 마이크로 시버트 단위로 표시한다. 과거에 사용하던 rem(röntgen equivalent man)이란 단위도 있는데 이 단위는 100 erg/gram = 1 rem으로 100 rem = 1 Sievert. 

보통은 시간당 방사선 피폭량으로 사용한다. 예를 들어 1 시간당 1 시버트의 피폭을 당하는 방사선의 강도를 1 Sv/h로 사용하는 식이다. 보통 시간당 밀리 시버트나 마이크로 시버트 단위를 사용한다. 



방사선의 투과 능력



방사선(放射線, radioactive ray)은 방사성 물질이 더 안정한 물질로 붕괴될 때나 기타 원인으로 발생하는 입자선 혹은 전자기파를 말한다. 인체에 악영향을 끼칠 수 있기 때문에 주의를 요하는 대상이다. 

우리가 흔히 아는 자외선, 가시광선, 적외선, 전파 등도 넓은 범위의 방사선의 범주에 포함된다. 인체에 직접적으로 전리(電離, 원자나 분자를 이온화시키는 것)로 인한 해를 주지 않는(즉, 세포나 분자를 파괴하지 않는) 방사선은 비전리 방사선이라고 하며, 흔히 아는 알파, 베타, 감마, X선은 전리 방사선이라고 한다. 휴대전화, 노트북, 기타 가전제품에서 나오는 전자기파도 이온화 능력이 없어 비전리 방사선에 속한다.[2] 위의 원자력 안전법상의 용어의 정의에서의 방사선은 전리 방사선에 국한되며, 통상적으로 사람들이 방사선이라고 지칭할 때의 방사선도 이러한 전리 방사선이다.

방사선의 종류


직접 전리 방사선
간접 전리 방사선
전자기파
알파선
베타선
중성자선
감마선
X선
전자기파


원소의 붕괴와 직접 관계가 있는 것은 α선과 β선이다. α선과 β선은 모두 입자선(粒子線)이다. 원자핵에서 α입자, 즉 헬륨의 원자핵(4He) 하나를 방출하면 질량수 4, 원자번호 2가 감소한 원자핵이 된다. β입자(전자)를 하나 방출하면, 질량수는 같고 원자번호가 하나 증가한 원자핵으로 바뀐다. 이것은 원자핵 안에서 1개의 중성자가 1개의 양성자로 바뀌면서 전자(e-)와 전자 반중성미자가 방출되기 때문이다. γ선(감마선)은 X선과 같은 전자기파이며, 붕괴 때에 α선 및 β선과 함께 방출된다. 하지만 γ선을 수반하지 않는 붕괴도 있다. 

 

전리(이온화) 방사선
직접 전리 방사선
알파선
알파선은 빠른 속도로 가속된 헬륨 원자의 흐름을 가진 입자선이다. 방사성 원자의 핵으로부터 2개의 중성자와 2개의 양성자를 가진 입자가 방출되어 나오는 붕괴과정이며 이 방출된 입자는 He 원자의 핵과 동일하다. 따라서 알파선을 방출하고는 원자번호가 2, 질량수가 4만큼 감소하니 이를 알파 붕괴라고 한다. 알파 입자는 상대적으로 크기가 크고 2개의 양전하를 가지고 있으므로 비교적 일정한 공간에서 전기와 자기의 영향을 받지 않게 하기가 쉽다. 방사성 핵종으로부터 방출되는 알파선은 물질 투과를 할 때 물질 중의 원자와 분자를 전리시킨다. 이 과정에서 물질에 에너지를 주고 자신은 운동에너지를 쉽게 잃어버리지만 이온화 능력은 아주 강력해서 그 궤적 주변에서 풍부한 이온쌍을 형성한다. 그 결과 물질에 대한 투과력은 작고 종이 한 장 정도면 막을 수 있다. 그러나 운동에너지가 크기 때문에 물질의 표면, 특히 생체 세포의 표면에 심각한 피해를 유발한다. 하지만 공기 중에서 몇 센티미터만 움직여도 알파 입자가 공기중의 전자를 흡수하여 완전히 무해한 헬륨 원자로 변해버린다. 이 때문에 헬륨이 천연가스층에서 많이 발견된다.

 

베타선
베타선은 빠른 속도로 가속된 전자이다. 방사성 원자의 핵으로부터 뉴트리노 입자와 함께 전자가 방출되는 방사성 붕괴과정에서 발생하는 방사선이다. 뉴트리노는 질량이 거의 없는 입자이고 붕괴과정에서 일부 에너지를 가지고 방출된다. 베타선 붕괴 과정에서 생긴 전자는 원자의 핵으로부터 방출된 것이기 때문에 원자의 궤도상에 있는 전자와 구별하기 위해서 베타선 입자라고 한다.

 

간접 전리 방사선
중성자선
중성자는 원자핵 구성요소의 하나이고 이 질량은 양자의 질량과 거의 같지만 단독으로는 안정한 것이 아니다. 반감기 11.7분으로 붕괴하고 베타선(전자)과 전자 반중성미자를 방출하여 양성자가 된다. 중성자는 에너지에 따라 고속중성자, 중속중성자, 저속중성자, 열중성자 4가지로 구별할 수 있다. 중성자는 핵반응와 핵분열이 일어날때 많이 방출되고 방사선 동위원소로부터 직접 방출되는 경우는 드물다. 다만, 자발핵분열인 경우는 방사성 동위원소로부터 직접 중성자가 방출되기도 한다.

 

감마선
투과력이 매우 강해서 납[3]같은 일부 금속을 제외하고 모두 투과할 수 있다. 알파, 베타, 감마 중 투과력이 제일 강하다.

 

X선
전자가 들뜸상태에서 바닥상태로 오면서 방출되는 방사선이다. 전자가 핵의 전기장에 의해 급격히 감속될 때 생기는 제동 X선과 L각 궤도와 K각 궤도 등 에너지 준위가 다른 궤도 전자의 재배열에 의해서 고유 에너지 차를 전자파의 형태로 방출하는 특성 X선이 있다. 전자파 방사선은 물질과 쉽게 반응하지 않아서 투과력은 강하다.

 

비전리(비이온화) 방사선

전자기파·빛의 종류

 

방사성 물질(방사성 원소)
원자핵 속의 양성자와 중성자는 강한 핵력에 의하여 결합되어 있으며 동시에 양성자들은 서로 전기적 반발력을 작용하고 있다. 대부분의 핵자들은 전기적 반발력보다 더 큰 핵력에 의하여 안정한 상태를 유지하고 있다. 그러나 양성자가 아주 많은 원자핵의 경우에는 양성자들 사이의 전기적 반발력이 크고, 핵자의 수가 많으므로 그들 사이의 거리가 멀어져 서로 끌어당기는 핵력은 상대적으로 작아지기 때문에 불안정한 상태가 된다. 질량수가 많은 원자핵들은 불안정하므로 입자나 전자기파를 방출하고 보다 안정한 원자핵이 되려고 한다. 이와 같이 원자핵이 불안정한 원소를 방사성 원소라고 한다. 

원자번호 83인 비스무트(Bi)에서 92인 우라늄(U)까지는 모두 천연방사성원소다. 93번 원소부터는 모두 인공 방사성 원소로 분류된다. 또한 대기 속에도 탄소14(14C)와 같은 방사성원소가 존재한다. 하지만 이것은 우주선(宇宙線)에 의하여 대기 속의 질소로부터 생겼기 때문에 천연방사성원소에 포함시키지 않는 경우가 많다.  

 

이용
방사선 연구가 어느 정도 이루어진 이후부터 그 강력한 투과력과 에너지는 여러 방면에 이용되고 있다. 기본적으로 방사선은 뛰어난 살균효과를 보이는데, 전리 방사선의 강력한 에너지는 DNA 사슬을 끊고 소기관과 효소 또한 파괴하여 죽일 수 있기 때문이다. # 따라서 각종 멸균소독에 이용되고 있으며 특히 밀봉 후 멸균 처리에 효과적이다. 대표적인 사용례가 바로 전리 방사선중 하나인 감마선을 이용한 라면의 건더기의 살균. 우주식품이나 특수 환자용 식재료 살균에도 이용된다. 다만, 대중들이 방사선이라고 하면 반사적으로 거부감을 가지는 경우가 워낙 많아서 요즘은 다른 살균 방식을 쓰는 경우도 많다. 

같은 원리를 이용해서 사람의 체세포도 전리 방사선으로 죽일 수 있는데, 마리 퀴리가 실제로 암세포가 있는 부위만을 선택적으로 조사하여 암세포를 제거하는 데 쓰이기도 한다는 것을 발견했다. 특히 항암제와 마찬가지로 암세포나 골수세포 등 빠르게 분열하는 세포들이 가장 쉽게 파괴되는데 이를 이용한 항암 치료인 방사선 치료는 오늘날 대부분의 암에 적용될 수 있는 일반적인 치료법이 되었다. 척추동물이 방사선에 노출되면 가장 먼저 훼손당하는 것 중 하나가 바로 적색골수로서, 조혈작용을 하는 골수가 가장 먼저 치명적 피해를 입는다. 이를 응용하여 백혈병 등의 혈액암의 경우 골수 이식 전에 병든 골수를 제거하기 위하여 집중조사하는 방법을 쓰기도 한다. X선은 방사선의 최초 발견이기도 했지만 동시에 의학적 이용 가능성도 보여주었는데, 사람을 직접 갈라 보지 않고서도 뼈의 구조와 모양을 알아볼 수 있게 하여 의료 발전에 크게 공헌했다. 지금은 더욱 발전하여 CT영상으로는 뼈 이외의 다른 장기까지 관찰할 수 있다. 핵의학과 분야에서는 방사성 물질을 주사해서 몸속에서 나오는 방사성 물질을 관찰해 정보를 얻는다. 몸에 좋은 것은 아니지만 방사능 홍차처럼 치명적이지는 않으니 걱정하지 말자. 

이외에 산업 분야에서도 여러 곳에 걸쳐 절찬리에 이용 중이다. 삼중수소를 이용한 야광물질은 지금도 군사적 용도로 생산되고 있으며, 투과력을 이용해 비파괴검사를 수행한다든지 원자핵 구조를 분석하는 데에도 쓰이고 있다. 육종학에서는 돌연변이를 유발시켜 작물의 품종을 개량하는 데에도 이용한 적이 있다.  

그 독성을 악용하여 암살용도로도 사용한다. 폴로늄 자체가 중금속이라 독성이 크고 내부 피폭, 그것도 알파선에 내부피폭 당하면 장기가 완전히 걸레짝이 돼버린다. 사실 한국에서도 살해 목적으로 이용된 사례가 있다. 

담배에도 들어가 있다. 담배(식물)가 폴로늄을 축적하기 때문.
 



반응형