자연 과학 Natural Science/물리 Physics

끈 이론, string theory, 초끈 이론

Jobs9 2022. 7. 29. 19:49
반응형

끈 이론에 따르면 모든 물질은 진동하고 있는 매우 작은 끈들로 이루어진다. ① 거시적인 물질 (예: 다이아몬드). ② 물질을 이루고 있는 분자 구조 (예: 탄소 원자의 다이아몬드 격자). ③ 분자를 이루고 있는 원자 구조. ④ 원자 궤도를 이루는 전자. ⑤ 원자핵을 구성하는 핵자(양성자·중성자)는 쿼크와 글루온으로 구성된다. ⑥ 끈 이론에 따르면, 전자와 쿼크, 글루온은 사실 진동하고 있는 미세한 끈으로 볼 수 있다.

 

끈 이론(영어: string theory)은 1차원의 개체인 끈과 이에 관련된 막(幕, brane)을 다루는 물리학 이론이다. 양자장론에서는 (0차원의) 점입자를 다루는데, 이에 따라 여러 무한대가 생겨 기본 이론으로 적절하지 않다. 끈 이론은 대신 크기를 지닌 개체를 다룸으로써 이러한 무한대를 피한다. 또한 끈 이론은 게이지 이론과 일반 상대론을 자연스럽게 포함한다. 이러한 성질 때문에 끈 이론은 모든 것의 이론의 유력한 후보들 가운데 하나다. 이 밖에도 양자 색역학, 우주론 등에서도 쓰인다.

개요
물리학의 이전 이론이 기본 입자를 점입자로 나타내었지만, 끈 이론에서는 기본 입자를 1차원의 끈으로 나타내었기 때문에 입자 이론이 해결할 수 없는 문제를 해결할 수 있다. 물론 끈을 아주 멀리에서 보면 다시 점입자와 다르지 않게 보이기 때문에 거시적인 부분에서는 기존의 역학을 그대로 사용할 수 있다는 이점이 있다. 무엇보다도 끈을 양자화하면 스핀이 2인 입자가 있어야 하며 이를 중력자로 해석할 수 있다. 그러나 2021년 현재 끈 이론을 비롯한 물리학의 어떤 이론도 양자 중력 이론을 완성해 내지 못하고 있다.  

끈을 기술하는 변수가 보손인 끈 이론을 보손 끈 이론이라고 하고, 초대칭(페르미온)쌍을 도입한 초대칭 끈 이론을 초끈 이론(superstring theory)이라고 한다. 

역사
1960년대 말에, 강입자의 산란이 특별한 성질을 가진다는 사실이 알려졌다. 이에 따라, 산란 진폭이 만델스탐 변수 {\displaystyle s,t,u}s,t,u에 대하여 대칭적인 꼴을 가지게 된다. 이 현상을 설명하기 위하여, 1968년에 가브리엘레 베네치아노가 이중 공명 모형(dual resonance model)이라는 모형을 도입하였다. 클로드 러블레이스(Claud Lovelace)는 이 이론이 우리가 관측하는 4차원 밖의 추가 차원이 없이는 일관적이지 못하다는 사실을 증명하였다.

성질
유일함
끈 이론은 푸앵카레 대칭, 미분동형사상 대칭, 초대칭 등 각종 대칭을 포함하고 있다. 따라서 이론에 임의의 항을 추가할 수 없고, 임의의 상수를 포함하지 않는다. 이론에서 결합상수의 역할을 하는 수는 스칼라장의 진공 기댓값(모듈러스)으로 결정된다. 

임의의 상수가 없어도, 끈 이론에서 부여하는 경계조건 등에 따라 총 5종의 (초)끈 이론이 존재한다. 그러나 1990년대에 들어와서 이 여러 이론들이 사실은 하나의 이론 (M이론)의 여러 극한이라는 사실이 발견되었다. 5종의 초끈 이론은 서로 이중성(T-이중성, S-이중성)으로 서로 연관되어, 사실 하나의 이론의 서로 다른 상으로 간주하여야 한다. 

추가 차원과 공간 말기
임의의 시공 차원에서 존재하는 일반적인 이론과는 달리, 끈 이론은 일관성을 위하여 특정한 시공 차원에서만 존재한다. 즉 M이론은 오직 11차원에서만 존재한다. (보손 끈 이론은 26차원에서 존재하고, 초끈이론은 10차원에서 존재한다. 또한 F이론은 12차원에서 존재한다.) 여분의 공간은 현상론적으로 여러가지 흥미로운 성질을 가지고, 이러한 모형은 끈 이론 이전에도 칼루차-클라인 이론이라는 이름으로 연구되어 왔다. 

실제로 관측된 4차원 밖의 다른 추가 차원에 대하여서는 크게 두 종류의 설명이 있다. 하나는 추가 차원이 아주 작은 크기로 축소화(영어: compactification)되어 관측되지 않았다는 것이다. 이 경우 추가 차원은 칼라비-야우 다양체를 이룬다. 다른 하나는 우리 우주는 11차원 시공 내의 4차원 부분공간(브레인)에 있다는 이론이다. 이와 같은 이론에는 랜들-선드럼 모형 등이 있다. 

유한성
대부분의 양자장론은 건드림이론에서 유한하지 않고, 따라서 재규격화가 필요하다. 이에 반하여 끈 이론은 건드림이론에서 유한하다고 학자들은 믿고 있다. 건드림이론을 벗어나면 끈 이론도 발산하게 되나, 이는 M이론 등이 해결할 수 있는 문제라고 추측하고 있다.

일관적인 양자중력
일반상대론은 재규격화할 수 없다. 여기에 초대칭을 더한 초중력 모형은 그 발산 정도가 줄어드나, 그래도 (심지어 11차원 초중력도) 건드림이론에서 발산하게 된다. 끈 이론에서는 중력이 자동적으로 나타내고, 또 건드림이론에서 유한하기 때문에 일관적인 양자중력 이론을 이룬다. 여기서 초중력은 끈 이론의 저에너지 유효이론으로 나타나게 된다.

우주론 및 블랙홀
빅뱅이나 블랙홀과 같은, 일반상대론에서 나타나는 특이점에서는 고전적 중력이 무너지고 양자중력 효과가 중요해진다. 끈 이론은 일관적인 양자중력 이론으로서, 이러한 상태를 해석하는 데 도움을 준다. 특히, 끈 이론에서는 (특수한 경우) 블랙홀의 베켄슈타인-호킹 엔트로피를 유도할 수 있다.

게이지 이론과의 관련
자연계는 낮은 에너지에서 게이지 이론 (표준 모형)으로 나타내어진다. 따라서 끈 이론은 낮은 에너지에서 게이지 대칭을 자연스럽게 재현하여야 한다. 끈 이론에서는 게이지 대칭을 여러 방법으로 만들 수 있다.


끈 이론의 개체

끈의 상호작용
열린 끈과 닫힌 끈
끈은 열린 끈과 닫힌 끈 두 종류가 있다. 닫힌 끈은 고리 모양으로 끝점이 없으나, 열린 끈은 두 개의 끝점을 가진다. 이 끝점은 D-막의 끝에 붙어 있다. 닫힌 끈만으로도 이론을 만들 수 있으나 만약 이론이 열린 끈을 포함한다면 (열린 끈 두개가 붙어서 닫힌 끈을 만들 수 있기 때문에) 닫힌 끈도 포함해야 한다.

끈은 고전적으로 여러 진동 모드를 지니며, 이는 양자화하면 입자를 나타낸다. 진동 모드의 특징이 입자의 특징(질량, 스핀 등)을 결정한다. 이는 마치 악기의 현 하나가 진동하는 방식에 따라 여러 음색의 소리를 내는 것과 같다. 닫힌 끈에서는 (유향(oriented) 끈의 경우) 왼쪽으로 전파하는 진동과 오른쪽으로 전파하는 진동, 즉 두 진동 모드 세트가 있다. 열린 끈은 닫힌 끈을 반으로 "접은" 것으로 간주할 수 있으며, 따라서 왼쪽 진동 모드와 오른쪽 진동 모드가 정상파를 이뤄 하나의 진동모드 세트를 이룬다.

고전적 상대론적 끈은 난부-고토 작용 및 폴랴코프 작용으로 간단하게 기술할 수 있다. 이를 일관적으로 양자화하려면 (음의 노름을 지닌 유령 상태를 없애려면) 등각대칭을 보손하거나 아니면 푸앵카레 대칭성을 깨야 한다. 일반적으로 등각대칭은 변칙적으로 깨지지만, 특정 차원 및 영점 에너지의 경우 깨지지 않는다. 따라서 보손 끈 이론은 26차원, 초끈 이론은 10차원에서만 모순 없이 존재한다.



반응형