전기·전자공학
Electrical & Electronic Engineering
전기공학, 전자공학을 배우는 학과.
90년대 이전에는 전기공학과, 전자공학과, 전파공학과 등으로 나뉘어 있기도 했지만, 90년대 후반부터 통합되는 추세에 있어 현재는 많은 대학에서 통합된 학과 또는 학부로 존재하는 경우가 많다. 일반적인 학부 교육과정은 전자기학 및 이와 가장 직접적인 연관이 있는 전파와 초고주파 공학 및 RF / 아날로그 회로 / 디지털 회로 및 컴퓨터 시스템 / 제어공학 / 통신 및 신호처리 / 전력공학 및 전기기기 / 반도체 등의 범주로 분류된다. IT 분야는 우리 일상과 모든 산업의 기반이 되기 때문에 수요가 끊이지 않는다.
전자 제품에 대한 막연한 동경을 가지고 전기전자공학과에 들어갔다가, 생각했던 것과 한참 다른 환경에 절망할지도 모른다. 전기전자공학은 전자기학 원리를 파악하고 개발하는 분야다. 전기전자공학과 지망생이라면 도서관에 가서 전기/전자공학 관련 책을 읽어보고 결정하는 것이 좋다. 이론뿐만 아니라 실습 및 과제 또한 상당히 어려우며 분량도 방대하다. 또한 브레드보드, 디지털 멀티미터, 파워 서플라이(전원공급장치), 펑션 제너레이터(함수 발생기), PCB 보드(인쇄 회로 기판), 납땜 등을 다뤄야 한다.
각 전공 과목별 과제에 MATLAB을 자주 사용한다. 공학수학에서는 푸리에 해석을 통해 sin과 cos만 가지고 어떻게 주기 신호를 만들어내는지 모의실험(시뮬레이션)을 해보기도 하고, 신호 및 시스템에서는 DFT(이산 푸리에 변환), FFT(고속 푸리에 변환), Z변환(z-tranform), 샘플링을 직접 해보기도 한다. 통신 시스템에서는 푸리에 변환을 이용해 AM, FM, ASK, FSK, PSK, QAM 등 각종 변조 방법을 구현해보기도 하며, 제어공학에서는 라플라스 변환으로 시스템 모델링을 하기도 하고, 영상 처리에서는 바코드 인식, 얼굴 인식, 필체 인식 등 여러 실험을 해보기도 한다.
무엇보다 다른 전공에 비해 실험이 많다. 모 대학 기준으로 3학년 2학기까지 들어야 하는 실험 과목, 혹은 실험을 포함하는 과목들은 일반 물리학 2학기, 전자공학 개론, 논리 회로, 전자 회로 실험 3학기, 마이크로프로세서 1까지 최소한 8개다. 실험만으로도 시간에 쫓기는 상황이다. 거기에다 마이크로프로세서 2, VHDL, 디지털 신호처리 설계 등을 추가 수강하는 사람들도 있다. 실험은 주당 3시간씩이지만 예습을 제대로 해놓지 않으면 시간에 쫓기는 경우가 많이 생길 것이다. 거기에 실험 과목은 주당 2시간이 1학점이기 때문에 다른 학과들에 비해 주당 시수가 많기도 하다.
워낙 분야가 다양해 어느 과목이 중요하냐고 묻는다면 답하기 어렵다. 하지만 그럼에도 분야에 상관없이 필요한 필수 과목은 존재한다. 대표적인 과목을 세 개 정도 꼽자면 전자기학, 회로이론, 전자 회로가 있다. 이 세 과목은 전기전자공학 모든 분야에서 기초 지식이 된다. 어느 분야로 진출할지 아직 정하지 못했다면 최소한 저 세 과목만큼은 반드시 연마해두도록 하자.
과학은 일반 물리학에 강하면 유리하다. 시간이 있으면 현대 물리학도 공부해두면 좋다. 예전에는 일반화학 1학기를 필수로 수강해야 했지만, 요즘은 현대물리와 일반화학 중에서 택일할 수 있는 쪽으로 교육과정을 변경한 대학도 나왔다. 그러나 전화기로 묶이는 기계공학과나 화학공학과에 비해서는 의외로 물리의 비중이 낮은 편인데, 통신 및 신호처리 등의 분야로 진출한다면 물리가 거의 들어가지 않는다. 물리의 비중이 높은 분야는 반도체와 전파(RF), 전력 한정이다. 필수 과목인 회로이론이나 전자 회로, 논리 회로 등도 회로의 물리적 원리보다는 회로 자체 분석 위주로 다룬다. 대신 또다른 필수 과목 중 하나인 전자기학은 물리 그 자체이기는 하다. 고전 역학은 일반 물리학 이후로는 배우지 않지만, 대신 전자기학을 깊게 파고들며, 반도체 분야는 양자역학과 고체 물리학이라는 현대 물리 최전선을 다루기 때문에, 대부분 고전 역학을 주로 다루는 다른 공학들과 다른 점이다. 수학은 분야를 막론하고 매우 중요하게 쓰인다. 통신 및 신호처리 쪽은 응용 수학의 한 분야라고 해도 될 정도. 또한, 컴퓨터공학과보다는 프로그래밍의 비중이 낮지만, 기계공학과나 화학공학과에 비해서 프로그래밍의 비중이 높다. 전자 제품을 프로그래밍으로 제어할 수 있어야 하기 때문. 수학, 물리, 프로그래밍 세 가지가 모두 중요하지만 세부 분야마다 의존하는 정도는 다르기 때문에 세부 분야를 선택할 때 참고하도록 하자.
참고로 서로 어느 정도 관련이 있는, 컴퓨터과학, 컴퓨터공학, 전기공학, 전자공학 등을 다루는 학과명이 나라마다 다른데, 만약 유학 생각이 있다면 잘 알아보는 것이 좋다. 예로 들면 외국에서는 컴퓨터공학을 컴퓨터과학 분야 중에서 하드웨어를 다루는 세부 영역의 명칭으로 사용하는데, 한국에서는 컴퓨터과학과 같은 뜻으로 자리 잡았다.
스탠퍼드 대학교는 Computer Science 전공에서 Computer Engineering 트랙을 제공한다.
분야
|
컴퓨터과학
|
컴퓨터공학
|
설명
|
응용 수학, 컴퓨팅 이론, 문제를 다루는 분야.
|
컴퓨터과학 분야 중에서 하드웨어를 다루는 세부 영역
|
영문
|
Computer Science
|
Computer Engineering
|
한국에서 전기공학은 단지 전력(power)에 관한 것(macro-scale, 强電)을 다루고, 전자공학은 전파나 반도체(SoC, PCB)등을 포함하는 것(micro scale, 弱電)을 다루지만, 미국은 그렇게 세분화된 분류를 하지 않고 그냥 ECE(Electrical and Computer Engineering), EE(Electrical Engineering)으로 통합해서 운영한다. 즉 미국 대학교나 대학원에서 전기공학은 전자공학을 포함한다고 생각하면 된다. MIT, UC 버클리처럼 전기전자공학과 컴퓨터과학을 합쳐서 전기전자컴퓨터과학부(EECS, Electrical Engineering and Computer Science)로 운영하는 대학도 있다. 요약하면 명칭 직역이 아닌 실제로 다루는 내용으로 한미 대학 간 비슷한 학과를 매칭하면, 한국 컴퓨터공학과 = 미국 Computer Science, 한국 전기/전자공학과 = 미국 Electrical Engineering이며, 대학마다 이것들을 적당히 합치고 섞어서 학과를 운영한다. 어떤 학교는 전기전자공학과로 통합 운영, 어떤 학교는 전기전자(+⍺)공학부로 나중에 세부 전공 선택, 어떤 학교는 전기공학과와 전자공학과를 따로 분리해서 운영하는 식이다. 반도체공학과나 정보통신공학과처럼 전기전자공학과에서 파생된 학과를 별도로 운영하기도 한다.
전자공학과 관련 교수들을 찾아보면 심심치 않게 컴퓨터과학(전산학) 전공 교수들을 볼 수 있다. 일부 대학은 전기전자공학부와 컴퓨터공학부를 포함한 IT 분야에 관련된 여러 학부가 공과대학에서 분리되어, 정보대학이라는 단과대학으로 신설되기도 한다. 영문 학과명은 보통 EE(Electrical Engineering)를 많이 사용한다. 학교 구성원끼리 학과를 말할 때에는 전전이라고 줄여서 말할 때가 많다. 학교에 따라 전기전자공학부인 곳도 있고, 전자공학과인 곳도 있다. 참고로 화도 조광운 박사가 와세다대학을 졸업한 후 조선(한국)에 전자공학이라는 학문을 들여왔고, 그가 1934년에 설립했던 광운대학교의 전신인 조선무선강습소가 전자공학을 학문으로써 한국 최초로 가르치기 시작했다.
전기전자공학과 인원이 워낙 많다 보니 학회 임원과 조교 외에는 누가 선후배인지 모르는 경우가 많으며, 그러다 보니 개인주의가 많은 편이다.
배우는 과목
전기전자공학에서 다루는 분야 및 과목을 나열하면 아래와 같다. 대학마다 조금씩 다를 수는 있으므로 주의. 대략적인 큰 틀만 적었다.
설계에 관련한 과목(공학교육인증이라면 필수 과목)
교양 과목
보통 교양 기초나 공대 필수 교양 과목으로 정해져 있다.
수학
미적분학
물리학
일반 물리학
화학
일반 화학
프로그래밍 언어
C언어
C++
C#
Java
VHDL
MATLAB
LabVIEW
Python
전공 기초 수학
공업수학(미분방정식, 해석학, 복소해석학)
선형대수학
확률과 통계
전력
전기 분야로 진로를 택한 학생들이 주로 배운다.
전력공학 - 전력의 발생부터 소비까지 전력 계통(발전, 송전, 변전, 배전)을 다룬다. 전기기사, 전기공사기사 출제 과목.
전기설비 - 수변전 설비, 배선 설비, 조명 설비 등의 설계, 설치, 운용법, 및 각 설비의 특성을 배우는 과목.
전기기기 - 직류기, 동기기, 변압기, 유도기를 다룬다. 전기기사, 전기공사기사 출제 과목.
에너지 시스템/재생 에너지
전기 에너지 변환
전력전자
집적회로 설계
Integrated Circuit Design
회로이론 (및 실험) - 기본적인 전기소자(저항, 커패시터, 인덕터) + OP Amp.를 사용한 회로의 분석을 배우는 기초적인 과목. 선수 과목으로 미적분학을 요구한다. 전기기사, 전기공사기사, 전자기사 출제 과목.
논리 회로 (및 실험) - AND, OR, NAND 등 디지털 회로를 만드는데 사용되는 기초 이론을 배우는 과목. 소자들의 내부, 구현, 데이터시트까지 상세하게 배우는 경우가 많다.
전자 회로 (및 실험) - 기본적인 전자소자(주로 트랜지스터)의 동작 원리, 소자를 이용한 회로 설계, 및 주파수 분석을 배우는 과목. 선수 과목으로 회로이론을 요구한다. 전자기사 출제 과목.
아날로그 및 디지털 집적 회로 - 아날로그 집적회로는 학교에 따라 전자 회로 2라는 이름으로 만들어지기도 한다. 교재도 전자 회로에서 쓰던 교재를 이어서 쓰는 편. 두 과목 모두 선수 과목으로 전자 회로를 요구한다.
디지털 시스템 설계
ASIC(주문형 반도체 회로) 설계
VLSI(대규모 집적 회로) 설계 - 선수 과목으로 논리 회로를 요구한다.
SoC(System on Chip) 설계
항공전자공학(Avionics)
반도체 및 디스플레이 공학
Semiconductors & Display Engineering.
물리전자공학/반도체 소자 - 보통 2학년 ~ 3학년 사이에 듣게 된다. 반도체의 원리를 이해하기 위해, 기본 수준의 에너지띠 이론을 배우고, drift-확산(diffusion)으로 대표되는 전하의 semi-classical transport를 배우게 된다. 이를 바탕으로 PN 접합 등 반도체 소자의 동작 원리를 배우는 정도로 끝난다. MOS capacitor에 대해 간단하게 배우기도 한다.
반도체공학 - 위 물리전자 과목에서 배운 이론을 바탕으로 주로 MOSFET에 대해 배우게 된다. 기본적인 MOSFET 소자 구조 및 동작 원리를 배우고 성능을 향상시키기 위한 scaling 방법론을 배우게 된다. Scaling에 따른 각종 비이상적인 현상 (short-channel effect, gate leakage 등)에 대해서도 다루며, 이를 극복하기 위한 HKMG, multi-gate device 등 여러 방안에 대해 배우게 된다. 경우에 따라서는 beyond-CMOS device(tunnel FET, negative capacitance 등)를 맛보기처럼 다루거나, 메모리 반도체 소자(DRAM, 플래시 메모리) 등을 잠깐 배울 수도 있다. 반도체 소자 관련 대학원에 진출하려면 반드시 수강해야 하며, 반도체 관련 대기업 취직용으로도 많은 도움이 될 것이다. 보통 3학년 ~ 4학년에 듣는다.
전자재료 - 과목 이름처럼 반도체 소자에 사용되는 여러 재료들의 특성을 좀 더 깊게 다룬다. 고체 물리학의 응용과도 같은 과목이기 때문에, 물리학과 또는 재료공학과 과목과 더 비슷한 느낌이 날 때가 많다. 실제로 이런 과들에서 개설하기도 한다. 반도체 공정 분야로 가기 위해서는 수강하는 것이 좋다. 보통 4학년 과목이다.
유기 소자 및 디스플레이 공학 - 디스플레이는 유기 전자재료를 보통 많이 쓰기 때문에 이를 위해 유기 재료 및 관련 소자의 특성을 배우려고 듣는 과목이다. 보통 4학년 과목이다.
광공학(레이저) - 광학과 레이저의 기본 원리를 배우고 이를 바탕으로 광통신 소자의 원리 및 시스템을 배우게 된다. 전자기학에 대해 빠삭하게 알아야하며, 양자역학도 잘 알아야 배우기 편한 과목이다. 광학 기본 원리, 가우스 빔 광학, 전자파 광학 이론, 레이저 원리, 반도체 광소자, 전자 광학, 비선형 광학, 음향 광학, 광통신 원리 등을 다룬다고 한다. 보통 4학년 과목.
현대 물리학, 양자역학, 통계역학, 고체 물리학 - 반도체 분야는 고체 물리학에 뿌리를 두고 있고, 이는 전자기학, 양자역학 및 통계역학을 골고루 잘 알아야 한다는 것을 뜻한다. 이 중 전자기학을 뺀 나머지는 일반 물리학에서 잠깐 들은 수준으로 끝나는 때가 많다. (그나마도 그냥 넘겨 뛸 때도 많다). 물론 반도체 관련 전공 과목을 들으면서, 간단하게라도 위 과목들 중 주요 개념을 짚고 가지만, 관심있는 사람들은 물리학과에서 여는 수업들을 듣는 것이 도움이 된다. 특히 소자/재료 모델링 및 시뮬레이션 (TCAD 모델 개발, quantum transport simulation, density-functional theory 등) 분야로 나가려면 관련 물리학에 대한 깊은 이해가 필수이다. 몇몇 학교는 "양자역학 응용" 정도 과목으로 전자공학과 전공 과목으로 개설되기도 한다.
통신 및 신호 처리
Communication/Network Engineering & Signal Processing
이쪽 계열 과목들은 대부분 수학으로 되어 있고, 물리학이 차지하는 비중이 매우 낮다는 특징이 있다. 사실상 응용수학으로 봐도 큰 무리가 없다. 통신에서 물리학이 필요한 부분은 아래에 있는 전파(RF)로 분리되어 있기 때문인 듯하다. 학부 과정에서는 묶어서 가르칠 때가 많지만, 대학원부터는 통신과 신호 처리는 서로 완전히 다른 분야라는 점에 유의. 주로 정보통신 쪽으로 나가려는 학생들이 많이 선택한다.
신호 및 시스템 - 연속 시간 신호와 LTI 시스템을 해석하고 설계하는데 필요한 분석 기법을 배우는 과목이다.
디지털 신호 처리(DSP) - Z-변환, DTFT, DFT, FFT, 디지털 필터, 샘플링 이론 등 이산 시간 시스템과 신호를 해석하고 처리하는데 필요한 지식을 배우는 과목이다. 선수 과목으로 신호 및 시스템을 요구한다.
통신공학(통신이론) - 통신에서 사용하는 기초적인 변조, 복조 기술의 원리와 푸리에 변환을 사용해서 스팩트럼이 어떻게 생겼는지, 성능은 어떠한지 등을 분석하는 과목이다. 추가로 PLL, 수퍼헤테로다인 수신기, 주파수-전압 변환기 등의 원리에 대해서도 배우기도 한다.
확률 및 랜덤 프로세스 - 랜덤한 신호 및 시스템을 해석하고 처리하기 위한 기본적인 지식인 확률 변수, 랜덤 벡터, 랜덤 프로세스 등 확률 이론을 배우는 과목이다. 학교에 따라서 확률 및 통계라는 이름으로 열기도 한다.
디지털 통신 - 디지털 통신 시스템의 기본적인 원리를 이해하는데 필요한 이론을 배우는 과목이다. 샘플링 이론, 디지털 변조, 정합 필터, 펄스 성형과 나이퀴스트 ISI criterion, AWGN(Additive White Gaussian Noise) 채널, MAP(maximum a posteriori) 디텍터와 ML(Maximum Likelihood) 디텍터, 이퀄라이저의 기초적인 개념 등을 배우면서, 기본적인 디지털 통신 시스템의 흐름을 익히게 된다. 선수 과목으로 랜덤 프로세스와 통신이론을 요구한다.
이동통신 - 실제 통신에 사용되는 다양한 알고리즘(해밍, CRC, 비터비 등)과 이동통신 채널의 모델링, 셀룰러 시스템, 다이버시티, MIMO(Multi Input Multi Output), 다중화(FDM, TDM, OFDM, Spatial multiplexing), 스팩트럼 확산(FHSS, DSSS), 다중 접속(TDMA, FDMA, CDMA, CSMA/CA, OFDMA 등), 링크버짓 등 이동 통신 이론을 배우는 과목이다. 선수 과목으로 디지털 통신을 요구한다.
데이터 통신
정보이론 및 부호화 이론 - 정보 엔트로피와 코딩을 배운다. 먼저, 정보 엔트로피를 통해 정보의 불확실성(uncertainty)을 정의하고, 상호의존정보(Mutual Information)와 KL 발산(Kullback-Leibler Divergence)에 대해서 배운 다음, BSC(Binary Symmetric Channel)과 같은 채널에서 채널 용량(channel capacity)을 배운다. 이때 채널 용량은 상호의존정보의 최대값으로 계산된다. 좀 많이 배우는 대학이라면 Shannon이 채널 용량을 증명(Information Capacity Theorem)한 뒤, 사람들이 그 증명을 해석한 sphere packing이나 Shannon이 증명할 때 사용한 random code, Fano's ineqality 등을 배우게 된다. 이후 데이터 신뢰성을 위해, 원래 비트 수보다 더 많은 비트를 이용해 통신할 때, 효율적으로 그 개수와 encoding, decoding을 해주는 알고리즘이 코딩인데, 이 코딩에 대해서 배운다. 학부 수준에서는 대부분 해밍 코드에서 끝내지만, 교수님께서 욕심이 많으시다면 polar code 같이 정보이론에 기반한 코드를 소개해 주실 것이다. 보통 이 과목을 제대로 배우려면 대학원에서 최소 2년 이상 수강해야 된다.
디지털 및 컴퓨터
Digital System/Computer Engineering
전자공학과 관련이 있는 과목들 혹은 선수 과목만 나열해 놓았다. 다른 전산학 과목들은 전자공학과 관련이 적거나 없는 컴퓨터과학 고유 영역이다.
논리 회로(디지털 논리 회로)
디지털 시스템 설계
임베디드 시스템
운영체제
컴퓨터 구조론
컴퓨터 그래픽스
제어공학
Control Systems Engineering.
꼭 제어공학 분야로 나가는 것이 아니더라도, 제어에 대한 지식은 어떠한 시스템과 프로세스에 대한 이해를 높이고, 새로운 관점으로 보는 데에 큰 도움이 될 수 있다. 이 때문에 메인 트리와 함께 서브 트리로서 제어 관련 과목들을 들어보는 것도 좋은 선택이 될 수 있다.
제어공학
디지털 제어 이론
로봇공학
최적화 이론
전파
Radio-frequency Engineering
전기전자에서 가장 어려운 분야로 꼽히기 때문에 이 분야로 나아가려는 사람은 적지만 굉장히 유망한 분야이며, 대학원 진학을 필수로 요구한다. 하지만 활성화된 자대 대학원을 찾기 어렵다. 관심있는 사람은 HFSS 같은 도구를 공부해 보는 것이 좋다. 반도체와 더불어 한국이 선도하고 있는 분야이다.
전자기학 - 전기전자공학과 전공 필수 과목.
초고주파 공학 - 학교에 따라서는 마이크로파 공학이라고도 한다. 각종 전자 기기에 사용되는 필터 설계 방식, 임피던스 정합법 등을 배우는 과목
마이크로 일렉트로닉스
RF 통신 및 실험
안테나 공학 - 안테나를 설계할 때 필요한 다양한 이론들을 배우는 과목.
전자파공학
광통신공학
레이더공학
의공학
새로이 뜨고있는 전자공학 관련 분야 중 하나. 의학적 문제를 전자공학 관점에서 해결하는 것이 이 학문의 목적이다. 조금 생소할 수는 있겠지만 대표적으로 한양대학교 전기•생체공학부의 생체공학전공이 전자공학과 상당한 연관이 있다. 이 분야 연구실들이 국내에 있기는 하나, 아직까지는 세계적인 학자가 되기 위해선 외국으로 떠야한다는 것이 중론이다.
의공학
생체계측
취업
과거에는 기계공학과, 화학공학과와 함께 전화기로, 2020년부터는 컴퓨터공학과와 함께 전컴로 묶이며 일자리 창출 및 성장이 활발하게 일어나고 있어 취업률이 높은 학과로 꼽힌다. 연구주제도 많아 대학원 진학률도 타 공대에 비해 높은 편이다.
특히 전기전자공학과가 많이 진출하는 분야인 반도체·디스플레이 산업은 수요가 급증하며 유망 산업으로 주목받고 있으며, 관련 인력수급도 꾸준히 요구되고 있다. 이에 맞춰 반도체학과를 개설하는 대학도 늘어나고 있다.
일례로 학점 3.5/4.5 이상에 진출 분야와 관련있다면 전기기사 자격증과 공인영어성적(토익 800점 이상 또는 토익스피킹/오픽 IM3 이상)을 갖추었다면 취업 걱정은 하지 않아도 될 정도이다. 다만 눈높이만 약간 낮추면 어디든 취업할 수 있다는 말이지 중견기업 이상부터는 취업경쟁률이 높다.
전력, 발전 플랜트: 흔히 얘기하는 사회인프라에 속하는 분야로 취업시 공기업이나 플랜트, 발전 설비 회사에서 일하게 되며 현대 사회에 반드시 필요한 분야와 설비들을 다루게 된다. '학문 발전 속도가 매우 느려 취업 후 추가 공부를 많이 하지 않아도 된다.', '취업시 석박사가 학사에 비해 메리트가 없으며, 취업 안 하고 연구자로 가더라도 연구 주제 찾기가 어렵다.'와 같은 오해가 있으나 이 경우는 학부만 졸업하고 취업을 했거나 대학원에서 플랜트분야를 공부한 사람들이 퍼뜨린 오해로 보인다. 혹은 전기기사 또는 전기공사기사를 취득하고 회사에 간 이후 안전관리나 안전대행 쪽으로 빠지는 경우 이렇게 생각하기 쉽다. 해당분야 역시 전력설비 및 플랜트 뿐만 아니라 스마트그리드, 마이크로그리드, HVDC 등 미래 산업을 이끌어갈 주제는 많다. 또한 한국전력공사 등 관련 공기업이 많아 공기업 취업에 있어 유리한 편이다.
신재생에너지: 태양광은 중국이 먹은지 오래고, 풍력, 조력, 바이오매스 분야는 한국에선 취급하는 곳이 적으므로 취업으로는 별로지만 연구 주제가 많으니 박사 학위를 노린다면 좋은 분야일 수도 있다. 물론 박사를 마쳐도 교수나 정출연 정도를 제외하면 국내 기업은 갈 곳이 별로 없다.
정보통신, 방송: 발전 속도도 빠르고 연구 주제도 많다. 다만 반도체, 회로, 프로그래밍, 전기 등의 분야에 비해서는 뽑는 인원이 적고 그만큼 전공하는 인원도 적은 다소 마이너한 분야이다. 지상파 4사(KBS, MBC SBS, EBS) 방송기술직의 경우 이를 대비하는 전문학원도 따로 있는 등 상당한 급여와 복지를 자랑하나 최근 방송가에 불어닥친 경영위기 때문에 채용 한파가 심각하다. 다만 지상파 4사를 제외한 케이블이나 종편의 경우는 기술직의 대우가 그리 좋지 못하다. 발전속도가 생각보다 너무 빠르기 때문에 대학원 진학을 추천한다.
제어공학: 전망,진로는 학부만 졸업하고 취업을 하거나 공정설계 등의 고전적인 제어를 공부한 경우와 대학원에 진학하는 경우에 따라 차이가 있다. 하지만 생각보다 대학 연구실에서는 고전적 제어를 하는 연구실이 많지 않고 대부분 로봇이나 우주공학, 머신 러닝 분야로의 적용이 이루어지기에 분야의 적용성과 가능성이 크다. 또 multi-agent control같은 최신 제어공학 분야로 넘어가면 의외로 연구분야는 많다.
반도체, 디스플레이: 전자공학의 정수. 한국을 대표하는 기업인 삼성전자, LG전자, SK하이닉스 등 전자업체에서 다루고 있는 분야. 연봉도 높고 일자리도 많다. 또한 발전 속도도 빠르고 연구 주제도 많다. 다른 분야에 비해 물리학의 하위 학문인 응집물질물리학이나 고체물리학 관련 지식을 많이 요구한다. 반도체 설계를 꿈꾸는 경우 대학원 진학이 필수이다.
집적회로: 계약학과가 아닌 이상 학사로 취업하기는 사실상 불가능하며 최소한 석사 이상을 요구한다. 학사로 채용공고를 하더라도 설계에는 투입이 안되며 대부분 반도체 테스트라는 업무에 투입된다. 반도체 산업중에서 상대적으로 자본이 적게 들기 때문에 자리는 많지만 연봉은 기업의 규모에 따라 케바케. 또한 발전 속도도 빠르고 연구 주제도 많다.
로봇: 각광받고 있는 분야로 대기업에서 주목하고 있다. 일본이 70% 이상을 잡고 있다보니 아직까지는 시장이 그리 크지 않지만 성장가능성이 높은 분야로 메카트로닉스학과와의 연관성이 크므로 이쪽 분야로 나아가고 싶다면 메카트로닉스 수업도 들어보는 것이 좋다. 로봇 프로그래밍(컴퓨터공학) + 로봇의 움직임 이해(기계공학) + 로봇의 동작(전기전자공학) 등, 3가지 분야가 쓰이기 때문에 제대로 하고 싶다면 대학원에 진학하는 것이 좋다.
의공학: 그냥 해외로 떠나는 것이 답이다. 물론 국내에도 괜찮은 연구실들이 꽤 있지만 박사만큼은 해외에서 따는 것이 좋다.
센서공학: 센서가 쓰이는 분야가 많다보니 자리는 많다. 그러나 한국보다는 주로 미국과 일본과 영국과 프랑스와 독일이 대부분의 기술을 보유하고 있는 관계로 센서공학에 관련된 연구를 할 경우 해외 대학원에 진학하는 것이 좋다.
전자기파(RF회로설계, 안테나설계): 학부생 수준으로도 상당한 난이도를 자랑하기 때문에 상세하게 들어가기 보다는 응용기술들의 소개와 원리에 대해 배우고, 상세하게 배우고 싶으면 대학원에 진학해야 한다. 하지만 비인기 분야라 그런지 활성화된 자대 대학원을 찾기가 어렵다.
프로그래밍: 프로그래밍 관련 기업으로 취업할 수 있다. 전자기기도 여러 프로그래밍들이 필요하기 때문에 로봇 관련 프로그래밍 분야, MCU 및 임베디드 시스템 분야, 인공지능 분야로 나아갈 수 있다. 혹은 완전히 프로그래밍 분야로 취업할 수 있으며 인공지능같은 4차산업분야는 대학원 진학이 필수이다. 주로 음성, 영상 등의 신호를 처리하는 신호처리 분야가 전기전자공학과 내에서 프로그래밍과 관련이 깊은 분야이다. Verilog, VHDL과 같은 FPGA 관련 언어들이 주로 사용되며 MCU의 경우 C언어가 주로 사용된다. 학과 교육과정에서도 FPGA, C언어, C++ 정도는 대부분 개설되어 있다.
법률: 변리사 등의 특허관련 분야로 취업할 수 있다.
소방: 소방설비기사 (전기, 기계)를 취득한 후 소방설계나 방재관련 분야로 나아갈 수 있다. 설계직의 경우 CAD를 다룰줄 알아야 한다. 경력을 쌓아 소방안전관리자, 소방기술사, 소방시설관리사 등으로 더 높게 나아갈 수 있다.
공무원: 전기직 공무원과 (방송)통신직 공무원으로 취업할 수 있다. 전기직 7/9급의 경우 전기기사 또는 전기공사기사, 통신직 7/9급의 경우 전자기사, 정보통신기사 또는 무선설비기사 자격증을 따놓고 응시하면 5%의 가산점이 주어지기 때문에 사실상 필수라고 보면 된다. 주로 전기직에 응시를 많이한다. 통신직의 경우에 통신이론(통신공학, 무선공학)의 경우 국가직, 지방직, 군무원의 시험범위가 살짝 상이하다.
시설관리, 전기시공, 전기설계: 전기기사, 전기공사기사 등을 취득하고 취업할 수 있는 분야 중 하나이다. 전기기사를 취득하고 공기업이나 발전소 등에 취직하지 못하면, 전기설계, 시설관리, 전기시공 분야로 나아갈 수 있다.
전기기사 자격증을 꼭 취득하여야 하는가?
결론부터 말하면 전기 분야 취업에 도움이 되겠지만 전기기사 자격증만으로 무조건 질 좋은 직장에 취업한다는 보장은 어렵다. 사실 대부분의 학생들이 꿈을 확실히 정하지 않고 뭔가 준비해야 할 것 같아 목표의식 없이 맹목적으로 자격증이라도 따려 하고 있다.
1~3학년 학부생때 막연하게 자격증이라도 딴다고 생각하지 말자. 위를 읽어봐서 알겠지만 전기전자를 전공하고 나아갈 수 있는 길은 엄청나게 많으니 학부생 때 여러 분야를 접해보는 것이 좋다.
전기전자공학과에선 자격증을 취득하지 않고도 취업할 수 있는 분야도 많다. 세상이 바뀌고 자격증도 중요하긴 하지만 실무나 경험을 중요하게 여기기 때문에 나아가고 싶은 분야에 대해 혼자 공부해보거나, 교수님의 의견을 물어 대학원에 진학하거나, 대외활동을 통해 해당 직무관련 경험을 쌓는 것이 취업에 훨씬 도움이 된다.
관련자격증은 언제든지 딸 수 있지만, 여러 분야에서 경험을 쌓는 때는 학부생 시절이 가장 유리하다는 걸 명심해라. 막연하게 전기기사를 취득하면, 자격증을 활용하여 취업할 수 있는 분야가 한정되고, 전기기사 자격증의 응시자격에 제한이 많이 사라지면서 비전공자, 전문대졸업생, 직장인 등의 유입이 많은 편이다.
전기기사 자격증에 한 번 발을 들이면 취업에 유리한 분야가 한국전력, 발전소, 전기시공, 전기설계, 시설관리 등으로 한정된다. 한국전력과 발전소를 제외하고는 뽑는 인원은 많지만 괜찮은 기업에 취업하기는 쉽지 않다. 전기기사만 가지고는 취업할 수 있는 분야가 좁아지기 때문에 자격증을 취득하기 전에 내가 정말로 원하는 분야가 뭔지 확실하게 정하길 바란다. 나아갈 수 있는 길은 정말로 많다.
관련 분야 자격증
전자기사 - 전자공학을 대표하는 기사 자격증이지만 전자공학과나 전기전자공학과에서 전기가 아닌 전자 분야로 진출하려는 학생들도 보통 전자기사보다는 전기기사 또는 통신 관련 진로일 경우 무선설비기사나 정보통신기사를 많이 취득한다.
전자계산기기사 - 컴퓨터 시스템을 설계, 설치 및 운용과 관련된 기사 자격증
전자계산기조직응용기사 - 전자계산기기사에 비해 소프트웨어 비중이 높으며 대학 졸업(예정)자라면 출신학과 관계 없이 응시 가능하다.
전기기사 - 전기전자공학은 물론 이공 계열에서 인기 많은 기사 자격증.
전기공사기사 - 보통 전기기사와 함께 취득하는 기사 자격증. 전기기사와 함께 쌍기사라고 불린다.
무선설비기사 - 무선통신이론과 관련된 기사 자격증.
정보통신기사 - 유선통신이론과 관련된 기사 자격증.
방송통신기사 - 방송통신기술에 사용할 수 있는 기사 자격증.
소방설비기사 - 소방관련 자격증으로 전기와 기계로 나뉜다. 기계와 전기 두 개 따야 쓸모가 있다.
전기철도기사 - 그렇게 인기가 많지는 않고, 교재도 없다.
대부분이 전기 쌍기사를 취득한다.
개설대학
국공립대학
국립한국교통대학교 철도대학 철도전기정보공학과
서울과학기술대학교 정보통신공학부 전기정보공학과, 전자IT미디어공학과
서울대학교 공과대학 전기정보공학부
서울시립대학교 공과대학 전자전기컴퓨터공학부
인천대학교 공과대학 전기공학과, 전자공학과
한경국립대학교 전자전기공학부 전기공학전공/전자공학전공, ICT로봇기계공학부 ICT로봇공학전공
사립대학
가천대학교 IT융합대학 전기공학과, 전자공학부 전자공학전공
가톨릭대학교 ICT공학계열 정보통신전자공학부
강남대학교 ICT융합공학부 전자공학전공
건국대학교 공과대학 전기전자공학부
경기대학교 공과대학 전자공학과
경희대학교 전자정보대학 전자공학과
고려대학교 공과대학 전기전자공학부
광운대학교 전자정보공과대학 전자공학과, 전자융합공학과, 전기공학과
국민대학교 공과대학 전자공학부 지능형반도체융합전자전공/전자시스템공학전공/지능전자공학전공
단국대학교 공과대학 전자전기공학부
대진대학교 공과대학 에너지공학부 전기공학전공, IT융합대학 전자공학과
동국대학교 공과대학 전자전기공학부
명지대학교 공과대학 전기공학과, 전자공학과
상명대학교 융합공과대학 SW융합학부 전기공학전공
서강대학교 공과대학 전자공학과
서경대학교 공학부 전자공학전공
성균관대학교 정보통신대학 전자전기공학부
세종대학교 인공지능융합대학 전자정보통신공학과
수원대학교 공과대학 전기전자공학부 전기공학전공/전자공학전공
숙명여자대학교 공과대학 ICT융합공학부 전자공학전공
숭실대학교
공과대학 전기공학부
IT대학 전자정보공학부
아주대학교 정보통신대학 전자공학과
안양대학교 창의융합대학 정보전기전자공학과
연세대학교 공과대학 전기전자공학부
이화여자대학교 엘텍공과대학 차세대기술공학부 전자전기공학전공
인하대학교 공과대학 전기공학과, 전자공학과
중앙대학교
창의ICT공과대학 전자전기공학부
공과대학 에너지시스템공학부 발전전기전공
청운대학교 공과대학 전자공학과
한국공학대학교 에너지·전기공학과, 전자공학부
한국외국어대학교 공과대학 전자공학과
한국항공대학교 공과대학 전기전자공학과
한성대학교 IT공과대학 기계전자공학부 전자트랙
한양대학교 서울캠퍼스 공과대학 융합전자공학부, 전기·생체공학부 전기공학전공
한양대학교 ERICA캠퍼스 공과대학 전자공학부
홍익대학교 공과대학 전자전기공학부
국립대학
강릉원주대학교
공과대학 전자공학과
과학기술대학 전기공학과
강원대학교
공학대학 전기제어계측공학부 전기공학전공/제어계측공학전공, 전자정보통신공학부 전자공학전공
IT대학 전기전자공학과, 전자공학과
사립대학
한라대학교 ICT융합공학부 전자공학트랙/전기공학트랙
상지대학교 소프트웨어융합대학 전기전자융합공학과
국립대학
공군사관학교 전자통신공학과
국립공주대학교 천안공과대학 전기전자제어공학부
국립한국교통대학교 융합기술대학 전자공학과, 전기공학과
국립한밭대학교 정보기술대학 전기공학과, 전자공학과
충남대학교 공과대학 전기공학과, 전자공학과
충북대학교 전자정보대학 전기공학부, 전자공학부
한국과학기술원 공과대학 전기및전자공학부
사립대학
고려대학교 세종캠퍼스 과학기술대학 전자및정보공학과, 전자기계융합공학과
남서울대학교 전자공학과
배재대학교 전기전자공학과
상명대학교 공과대학 전자공학과
선문대학교 전자공학과
순천향대학교 공과대학 전기공학과, 전자공학과, 전자정보공학과
우송대학교 철도물류대학 철도시스템학부 철도전기시스템전공
중부대학교 전기전자자동차공학부 전기전자공학전공
청주대학교 공과대학 전기제어공학과, 전자공학과
한남대학교 공과대학 전기전자공학과
호서대학교 전기공학과, 시스템제어공학과, 전자공학과
홍익대학교 과학기술대학 전자전기융합공학과
한서대학교 항공융합학부 전기전자공학과
한국기술교육대학교 전기전자통신공학부 전기공학전공/전자공학전공
국립대학
경북대학교 IT대학 전기공학과, 전자공학부
경상국립대학교 공과대학 전기공학과, 전자공학부
국립금오공과대학교 전자공학부
국립부경대학교
공과대학 전기공학부
정보융합대학 전자정보통신공학부 정보통신공학전공, 전자공학전공
국립안동대학교 공과대학 전자공학과
국립창원대학교 메카트로닉스대학 전기전자제어공학부
국립한국해양대학교 해양과학기술융합대학 전자전기정보공학부
대구경북과학기술원 기초학부 전자공학트랙
부산대학교 공과대학 전기공학과, 전자공학과
울산과학기술원 정보바이오융합대학 전기전자공학과
사립대학
경남대학교 공과대학 전기공학과
경성대학교 공과대학 전기공학과, 전자공학과
경일대학교 스마트공학부 전기에너지공학전공
계명대학교 공과대학 전자전기공학부 전기에너지공학과, 전자공학과
대구가톨릭대학교 공과대학 전기공학과
대구대학교 정보통신대학 전자전기공학부
동명대학교 공과대학 전기공학과
동아대학교 공과대학 전기공학과, 전자공학과
동양대학교 철도대학 철도운전전기신호학과
동의대학교 ICT융합공과대학 전기공학과, 전자공학과
신라대학교 공과대학 전기전자공학과
영남대학교 기계IT대학 전기공학과, 전자공학과
영산대학교 스마트공과대학 전기전자공학과
울산대학교 공과대학 전기공학부 전기전자공학전공
위덕대학교 지능형전력시스템공학과
인제대학교 전자IT기계자동차공학부 전자공학전공
포항공과대학교 전자전기공학과
한동대학교 전산전자공학부 전자공학전공
국립대학
광주과학기술원 전기전자컴퓨터공학부
군산대학교 공과대학 전자공학과, 전기공학과
순천대학교 공과대학 전기전자공학부
전남대학교
공과대학 전기공학과, 전자공학과
공학대학 전기전자통신컴퓨터공학부 전기및반도체공학전공/전자통신공학전공
전북대학교 공과대학 전기공학과, 전자공학부, 융합기술공학부 IT응용시스템공학전공
사립대학
광주대학교 공과대학 전기전자공학부
송원대학교 철도대학 철도차량전기시스템학과
우석대학교 과학기술대학 전기자동차공학부 전기전자공학전공
원광대학교 창의공과대학 전기공학과, 전자공학과
전주대학교 공과대학 전기전자공학과
조선대학교 공과대학 전기공학과, 전자공학과
호원대학교 산업융합대학 전기소방안전학과
국립대학
제주대학교 공과대학 전기공학과, 전자공학과